Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

M. Sukeri M. Yusof, ${ }^{\text {a }}$ A. Sahali Mardi ${ }^{\text {b }}$ and Bohari M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia, Mengang Telipot, 21300 Kuala Terengganu, Malaysia, and ${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.114$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(4-Methoxybenzoyl)- \mathbf{N}^{\prime}-(4-methylphenyl)thiourea

The molecular structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, adopts a trans-cis configuration with respect to the position of the 4-methoxybenzoyl and 4-methylphenyl groups relative to the S atom across the thiourea $\mathrm{C}-\mathrm{N}$ bonds. The 4-methylphenyl fragment is inclined to the 4-methoxybenzoyl group by 70.62 (9) ${ }^{\circ}$. The molecule is stabilized by intermolecular N $\mathrm{H} \cdots \mathrm{S}$ interactions, forming a dimer.

Comment

The title compound, (I), is isomeric and isostructural with N -(4-methoxybenzoyl)- N^{\prime}-o-tolylthiourea (Yusof \& Yamin, 2004). The trans-cis configuration with respect to the position of the 4-methoxybenzoyl and 4-methylphenyl groups relative to the S atom across the thiourea $\mathrm{C} 8-\mathrm{N} 1$ and $\mathrm{C} 8-\mathrm{N} 2$ bonds, respectively, is maintained.

The carbonylthiourea (S1/N1/N2/C7/O1/C8), 4-methoxybenzoyl (C1-C6/O2/C15) and 4-methylphenyl (C9-C14/C16) groups are each planar. The maximum deviation is 0.035 (1) \AA for atom N 1 from the mean plane in the carbonylthiourea group. The dihedral angles between the carbonylthiourea group and the 4-methoxyphenyl and 4-methylphenyl fragments of 27.33 (7) and 43.37 (8) $)^{\circ}$, respectively, are larger than those in N-(4-methoxybenzoyl)- N^{\prime}-o-tolylthiourea [15.58 (7) and $22.76(8)^{\circ}$, respectively]. The inclination between the aryl fragments of $70.62(9)^{\circ}$ is larger than that of $7.58(9)^{\circ}$ in N -(4-methoxybenzoyl)- N^{\prime}-o-tolylthiourea.

There are two intramolecular hydrogen bonds, viz. N2$\mathrm{H} 2 A \cdots \mathrm{O} 1$ and $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1$ (Table 2), and as a result, two pseudo-six-membered rings ($\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1$

Figure 1
The molecular structure of (I), with 50% probability displacement ellipsoids. The dashed lines indicate the intramolecular hydrogen-bond contacts.

Received 13 September 2005 Accepted 16 September 2005 Online 21 September 2005

Figure 2
Packing diagram of compound (I), viewed down the a axis. The dashed lines denote $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, which form a dimer.
and $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1)$ are formed. In the crystal structure, molecules are linked by intermolecular interactions, $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y, 2-z$], forming a centrosymmetric dimer.

Experimental

To a stirred acetone solution (75 ml) of anisoyl chloride $(2.5 \mathrm{~g}$, 20 mmol) and ammonium thiocyanate ($2.1 \mathrm{ml}, 20 \mathrm{mmol}$), p-toluidine ($2.8 \mathrm{ml}, 20 \mathrm{mmol}$) was added dropwise. The mixture was refluxed for 3 h . The resulting solution was poured into a beaker containing ice cubes. The white precipitate was filtered off and washed with distilled water and cold ethanol, and then dried in a vacuum. Good quality single crystals were obtained by recrystallization from dimethyl sulfoxide.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=300.37$
Triclinic, $P \overline{1}$
$a=5.3676$ (9) \AA
$b=11.4763$ (19) \AA
$c=12.447$ (2) \AA
$\alpha=92.505(3)^{\circ}$
$\beta=91.692(3)^{\circ}$
$\gamma=94.138(3)^{\circ}$
$V=763.6(2) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.306 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 951 \\
& \quad \text { reflections } \\
& \theta=1.6-25.5^{\circ} \\
& \mu=0.22 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.45 \times 0.39 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
2827 independent reflections
2492 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=25.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-13 \rightarrow 13$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.114$
$S=1.08$
2827 reflections
192 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0606 P)^{2}\right. \\
& \quad+0.149 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

S1-C8	$1.6640(16)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.385(2)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.225(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.328(2)$
O2-C3	$1.353(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.427(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.376(2)$		
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$116.22(14)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$117.81(12)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$125.97(12)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1$	0.86	1.94	$2.640(2)$	138
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{~S} 1$	0.93	2.79	$3.1980(19)$	108
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~S}^{\mathrm{i}}$	0.86	2.72	$3.5305(16)$	158

Symmetry code: (i) $-x+1,-y+1,-z+2$.
After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on their parent C or N atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, N)$ for CH_{2} and NH , and $1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3}.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia and Kolej Universiti Sains dan Teknologi Malaysia for research grant IRPA No. 09-02-02-993.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. M. \& Yamin, B. M. (2004). Acta Cryst. E60, o1687-o1688.

