Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

M. Sukeri M. Yusof,^a A. Sahali Mardi^b and Bohari M. Yamin^b*

^aDepartment of Chemistry, Faculty of Science and Technology, Kolej Universiti Sains dan Teknologi Malaysia, Mengang Telipot, 21300 Kuala Terengganu, Malaysia, and ^bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.114 Data-to-parameter ratio = 14.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. N-(4-Methoxybenzoyl)-N'-(4-methylphenyl)thiourea

The molecular structure of the title compound, $C_{16}H_{16}N_2O_2S$, adopts a *trans-cis* configuration with respect to the position of the 4-methoxybenzoyl and 4-methylphenyl groups relative to the S atom across the thiourea C–N bonds. The 4-methylphenyl fragment is inclined to the 4-methoxybenzoyl group by 70.62 (9)°. The molecule is stabilized by intermolecular N– $H \cdot \cdot S$ interactions, forming a dimer.

Comment

The title compound, (I), is isomeric and isostructural with N-(4-methoxybenzoyl)-N'-o-tolylthiourea (Yusof & Yamin, 2004). The *trans-cis* configuration with respect to the position of the 4-methoxybenzoyl and 4-methylphenyl groups relative to the S atom across the thiourea C8-N1 and C8-N2 bonds, respectively, is maintained.

The carbonylthiourea (S1/N1/N2/C7/O1/C8), 4-methoxybenzoyl (C1–C6/O2/C15) and 4-methylphenyl (C9–C14/C16) groups are each planar. The maximum deviation is 0.035 (1) Å for atom N1 from the mean plane in the carbonylthiourea group. The dihedral angles between the carbonylthiourea group and the 4-methoxyphenyl and 4-methylphenyl fragments of 27.33 (7) and 43.37 (8)°, respectively, are larger than those in *N*-(4-methoxybenzoyl)-*N'-o*-tolylthiourea [15.58 (7) and 22.76 (8)°, respectively]. The inclination between the aryl fragments of 70.62 (9)° is larger than that of 7.58 (9)° in *N*-(4methoxybenzoyl)-*N'-o*-tolylthiourea.

There are two intramolecular hydrogen bonds, *viz*. N2– $H2A\cdots O1$ and C14– $H14\cdots S1$ (Table 2), and as a result, two pseudo-six-membered rings (C8–N2–C9–C14–H14 $\cdots S1$

Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids. The dashed lines indicate the intramolecular hydrogen-bond contacts.

Received 13 September 2005 Accepted 16 September 2005 Online 21 September 2005

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Packing diagram of compound (I), viewed down the *a* axis. The dashed lines denote $N-H\cdots S$ hydrogen bonds, which form a dimer.

and C7-N1-C8-N2-H2A···O1) are formed. In the crystal structure, molecules are linked by intermolecular interactions, N1-H1A···S1ⁱ [symmetry code: (i) 1 - x, 1 - y, 2 - z], forming a centrosymmetric dimer.

Experimental

To a stirred acetone solution (75 ml) of anisoyl chloride (2.5 g, 20 mmol) and ammonium thiocyanate (2.1 ml, 20 mmol), *p*-toluidine (2.8 ml, 20 mmol) was added dropwise. The mixture was refluxed for 3 h. The resulting solution was poured into a beaker containing ice cubes. The white precipitate was filtered off and washed with distilled water and cold ethanol, and then dried in a vacuum. Good quality single crystals were obtained by recrystallization from dimethyl sulfoxide.

Crystal data

$C_{16}H_{16}N_2O_2S$	Z = 2
$M_r = 300.37$	$D_x = 1.306 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 5.3676 (9) Å	Cell parameters from 951
b = 11.4763 (19) Å	reflections
c = 12.447 (2) Å	$\theta = 1.6-25.5^{\circ}$
$\alpha = 92.505 \ (3)^{\circ}$	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 91.692 \ (3)^{\circ}$	T = 293 (2) K
$\gamma = 94.138 \ (3)^{\circ}$	Block, colourless
$V = 763.6 (2) \text{ Å}^3$	$0.45 \times 0.39 \times 0.30 \text{ mm}$

Data collection

Bruker SMART APEX CCD area- detector diffractometer	2827 independent reflections 2492 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.016$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -6 \rightarrow 6$
$T_{\min} = 0.90, \ T_{\max} = 0.93$	$k = -13 \rightarrow 13$
7554 measured reflections	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0606P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 0.149P]
$wR(F^2) = 0.114$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
2827 reflections	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
192 parameters	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

H-atom parameters constrained

Fable 1			
Selected	geometric parameters	(Å,	°).

S1-C8	1.6640 (16)	N1-C8	1.385 (2)
O1-C7	1.225 (2)	N2-C8	1.328 (2)
O2-C3 N1-C7	1.353 (2) 1.376 (2)	N2-C9	1.427 (2)
N2-C8-N1	116.22 (14)	N1-C8-S1	117.81 (12)
N2 - C8 - S1	125.97 (12)		

 Table 2

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O1$	0.86	1.94	2.640 (2)	138
$C14-H14\cdots S1$	0.93	2.79	3.1980 (19)	108
$N1 - H1A \cdots S1^{i}$	0.86	2.72	3.5305 (16)	158

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

After their location in a difference map, all H atoms were positioned geometrically and allowed to ride on their parent C or N atoms, with C-H = 0.93–0.96 Å and N-H = 0.86 Å, and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C},N)$ for CH₂ and NH, and $1.5U_{\rm eq}({\rm C})$ for CH₃.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia and Kolej Universiti Sains dan Teknologi Malaysia for research grant IRPA No. 09–02-02–993.

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Yusof, M. S. M. & Yamin, B. M. (2004). Acta Cryst. E60, 01687-01688.